FAQs about Agentic AI

· 7 min read
FAQs about Agentic AI

What is agentic AI and how does this differ from the traditional AI used in cybersecurity? Agentic AI refers to autonomous, goal-oriented systems that can perceive their environment, make decisions, and take actions to achieve specific objectives. Agentic AI is a more flexible and adaptive version of traditional AI. Agentic AI is a powerful tool for cybersecurity. It allows continuous monitoring, real time threat detection and proactive response.
How can agentic AI enhance application security (AppSec) practices? Agentic AI can revolutionize AppSec practices by integrating intelligent agents into the software development lifecycle (SDLC). These agents can continuously monitor code repositories, analyze commits for vulnerabilities, and leverage advanced techniques like static code analysis, dynamic testing, and machine learning to identify a wide range of security issues. Agentic AI prioritizes vulnerabilities according to their impact in the real world and exploitability. This provides contextually aware insights into remediation. What is a code property graph (CPG), and why is it important for agentic AI in AppSec? A code property graph is a rich representation that shows the relationships between code elements such as variables, functions and data flows. By building a comprehensive CPG, agentic AI can develop a deep understanding of an application's structure, potential attack paths, and security posture.  https://sites.google.com/view/howtouseaiinapplicationsd8e/ai-in-cyber-security  enables the AI to make more accurate and relevant security decisions, prioritize vulnerabilities effectively, and generate targeted fixes.  AI-powered automatic vulnerability fixing leverages the deep understanding of a codebase provided by the CPG to not only identify vulnerabilities but also generate context-aware, non-breaking fixes automatically. The AI analyses the code around the vulnerability to understand the intended functionality and then creates a fix without breaking existing features or introducing any new bugs. This method reduces the amount of time it takes to discover a vulnerability and fix it. It also relieves development teams and provides a reliable and consistent approach to fixing vulnerabilities.  What are some potential challenges and risks associated with the adoption of agentic AI in cybersecurity? Some of the potential risks and challenges include:

Ensure trust and accountability for autonomous AI decisions
AI protection against data manipulation and adversarial attacks
Maintaining accurate code property graphs
Addressing ethical and societal implications of autonomous systems
Integrating agentic AI into existing security tools and processes
Organizations can ensure the trustworthiness and accountability of agentic AI by establishing clear guidelines and oversight mechanisms. This includes implementing robust testing and validation processes to verify the correctness and safety of AI-generated fixes, maintaining human oversight and intervention capabilities, and fostering a culture of transparency and responsible AI development. Regular audits, continuous monitoring, and explainable AI techniques can also help build trust in the decision-making processes of autonomous agents.  Best practices for secure agentic AI development include:

Adopting safe coding practices throughout the AI life cycle and following security guidelines
Protect against attacks by implementing adversarial training techniques and model hardening.
Ensure data privacy and security when AI training and deployment
Conducting thorough testing and validation of AI models and generated outputs
Maintaining transparency in AI decision making processes
Regularly monitoring and updating AI systems to adapt to evolving threats and vulnerabilities
How can agentic AI help organizations keep pace with the rapidly evolving threat landscape? By continuously monitoring data, networks, and applications for new threats, agentic AI can assist organizations in keeping up with the rapidly changing threat landscape. These autonomous agents are able to analyze large amounts of data in real time, identifying attack patterns, vulnerabilities and anomalies which might be evading traditional security controls. By learning from each interaction and adapting their threat detection models, agentic AI systems can provide proactive defense against evolving cyber threats, enabling organizations to respond quickly and effectively.  Agentic AI is not complete without machine learning. It allows autonomous agents to identify patterns and correlate data and make intelligent decisions using that information. Machine learning algorithms power various aspects of agentic AI, including threat detection, vulnerability prioritization, and automatic fixing. Machine learning improves agentic AI's accuracy, efficiency and effectiveness by continuously learning and adjusting. How can agentic AI increase the efficiency and effectiveness in vulnerability management processes. Agentic AI can streamline vulnerability management processes by automating many of the time-consuming and labor-intensive tasks involved. Autonomous agents can continuously scan codebases, identify vulnerabilities, and prioritize them based on their real-world impact and exploitability. The agents can generate context-aware solutions automatically, which reduces the amount of time and effort needed for manual remediation. By providing real-time insights and actionable recommendations, agentic AI enables security teams to focus on high-priority issues and respond more quickly and effectively to potential threats.

What are some examples of real-world agentic AI in cybersecurity? Examples of agentic AI in cybersecurity include:

Platforms that automatically detect and respond to malicious threats and continuously monitor endpoints and networks.
AI-powered vulnerability scanners that identify and prioritize security flaws in applications and infrastructure
Intelligent threat intelligence systems gather data from multiple sources and analyze it to provide proactive protection against emerging threats
Automated incident response tools can mitigate and contain cyber attacks without the need for human intervention
AI-driven fraud detection solutions that identify and prevent fraudulent activities in real-time
Agentic AI can help address the cybersecurity skills gap by automating many of the repetitive and time-consuming tasks that security professionals currently handle manually. By taking on tasks such as continuous monitoring, threat detection, vulnerability scanning, and incident response, agentic AI systems can free up human experts to focus on more strategic and complex security challenges. Additionally, the insights and recommendations provided by agentic AI can help less experienced security personnel make more informed decisions and respond more effectively to potential threats. What are the implications of agentic AI on compliance and regulatory requirements for cybersecurity? Agentic AI can help organizations meet compliance and regulatory requirements more effectively by providing continuous monitoring, real-time threat detection, and automated remediation capabilities. Autonomous agents ensure that security controls and vulnerabilities are addressed promptly, security incidents are documented, and reports are made. However, the use of agentic AI also raises new compliance considerations, such as ensuring the transparency, accountability, and fairness of AI decision-making processes, and protecting the privacy and security of data used for AI training and analysis.  For organizations to successfully integrate agentic artificial intelligence into existing security tools, they should:

Assess their current security infrastructure and identify areas where agentic AI can provide the most value
Develop a clear strategy and roadmap for agentic AI adoption, aligned with overall security goals and objectives
Make sure that AI agent systems are compatible and can exchange data and insights seamlessly with existing security tools.
Provide training and support for security personnel to effectively use and collaborate with agentic AI systems
Create governance frameworks to oversee the ethical and responsible use of AI agents in cybersecurity
What are some emerging trends and future directions for agentic AI in cybersecurity? Some emerging trends and future directions for agentic AI in cybersecurity include:

Collaboration and coordination among autonomous agents from different security domains, platforms and platforms
Development of more advanced and contextually aware AI models that can adapt to complex and dynamic security environments
Integration of agentic AI with other emerging technologies, such as blockchain, cloud computing, and IoT security


Exploration of novel approaches to AI security, such as homomorphic encryption and federated learning, to protect AI systems and data
Advancement of explainable AI techniques to improve transparency and trust in autonomous security decision-making
How can agentic AI help organizations defend against advanced persistent threats (APTs) and targeted attacks? Agentic AI provides a powerful defense for APTs and targeting attacks by constantly monitoring networks and systems to detect subtle signs of malicious behavior. Autonomous agents can analyze vast amounts of security data in real-time, identifying patterns and anomalies that might indicate a stealthy and persistent threat. By learning from past attacks and adapting to new attack techniques, agentic AI can help organizations detect and respond to APTs more quickly and effectively, minimizing the potential impact of a breach.

The following are some of the benefits that come with using agentic AI to monitor security continuously and detect threats in real time:

24/7 monitoring of networks, applications, and endpoints for potential security incidents
Rapid identification and prioritization of threats based on their severity and potential impact
Security teams can reduce false alarms and fatigue by reducing the number of false positives.
Improved  ai-powered app security  of complex and distributed IT environments
Ability to detect novel and evolving threats that might evade traditional security controls
Security incidents can be dealt with faster and less damage is caused.
How can agentic AI improve incident response and remediation processes? Agentic AI can significantly enhance incident response and remediation processes by:

Automated detection and triaging of security incidents according to their severity and potential impact
Providing contextual insights and recommendations for effective incident containment and mitigation
Automating and orchestrating incident response workflows on multiple security tools
Generating detailed incident reports and documentation for compliance and forensic purposes
Continuously learning from incident data to improve future detection and response capabilities
Enabling faster and more consistent incident remediation, reducing the overall impact of security breaches
What are some considerations for training and upskilling security teams to work effectively with agentic AI systems? To ensure that security teams can effectively leverage agentic AI systems, organizations should:

Give comprehensive training about the capabilities, limitations and proper usage of agentic AI tools
Foster a culture of collaboration and continuous learning, encouraging security personnel to work alongside AI systems and provide feedback for improvement
Develop clear protocols and guidelines for human-AI interaction, including when to trust AI recommendations and when to escalate issues for human review
Invest in upskilling programs that help security professionals develop the necessary technical and analytical skills to interpret and act upon AI-generated insights
Encourage cross-functional collaboration between security, data science, and IT teams to ensure a holistic approach to agentic AI adoption and use
How can organizations balance?

How can we balance the benefits of AI and human decision-making with the necessity for human oversight in cybersecurity? To strike  ai auto-fix  between leveraging agentic AI and maintaining human oversight in cybersecurity, organizations should:

Establish clear roles and responsibilities for human and AI decision-makers, ensuring that critical security decisions are subject to human review and approval
Use AI techniques that are transparent and easy to explain so that security personnel can understand and believe the reasoning behind AI recommendations
Test and validate AI-generated insights to ensure their accuracy, reliability and safety
Maintain human-in the-loop methods for high-risk security scenarios such as incident response or threat hunting
Foster a culture of responsible AI use, emphasizing the importance of human judgment and accountability in cybersecurity decision-making
Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals